AI资讯新闻榜单内容搜索-Attention

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Attention
黑匣子被打开了!能玩的Transformer可视化解释工具,本地运行GPT-2、还可实时推理

黑匣子被打开了!能玩的Transformer可视化解释工具,本地运行GPT-2、还可实时推理

黑匣子被打开了!能玩的Transformer可视化解释工具,本地运行GPT-2、还可实时推理

2017 年,谷歌在论文《Attention is all you need》中提出了 Transformer,成为了深度学习领域的重大突破。该论文的引用数已经将近 13 万,后来的 GPT 家族所有模型也都是基于 Transformer 架构,可见其影响之广。 作为一种神经网络架构,Transformer 在从文本到视觉的多样任务中广受欢迎,尤其是在当前火热的 AI 聊天机器人领域。

来自主题: AI资讯
7486 点击    2024-08-11 17:38
八问八答搞懂Transformer内部运作原理

八问八答搞懂Transformer内部运作原理

八问八答搞懂Transformer内部运作原理

七年前,论文《Attention is all you need》提出了 transformer 架构,颠覆了整个深度学习领域。

来自主题: AI技术研报
9579 点击    2024-08-07 14:31
物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野

物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野

物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野

如何突破 Transformer 的 Attention 机制?中国科学院大学与鹏城国家实验室提出基于热传导的视觉表征模型 vHeat。将图片特征块视为热源,并通过预测热传导率、以物理学热传导原理提取图像特征。相比于基于Attention机制的视觉模型, vHeat 同时兼顾了:计算复杂度(1.5次方)、全局感受野、物理可解释性。

来自主题: AI技术研报
9396 点击    2024-06-03 17:51
8x7B MoE与Flash Attention 2结合,不到10行代码实现快速推理

8x7B MoE与Flash Attention 2结合,不到10行代码实现快速推理

8x7B MoE与Flash Attention 2结合,不到10行代码实现快速推理

前段时间,Mistral AI 公布的 Mixtral 8x7B 模型爆火整个开源社区,其架构与 GPT-4 非常相似,很多人将其形容为 GPT-4 的「缩小版」。

来自主题: AI技术研报
5957 点击    2024-01-01 11:08